

FIRST ENERGY METALS DRILLS 1.56 PERCENT LITHIUM OXIDE OVER 6 METERS IN DRILL HOLE LC-21-18 AT AUGUSTUS LITHIUM PROPERTY

Vancouver, B.C. (January 20, 2022) – First Energy Metals Ltd. (CSE: FE) ("First Energy" or the "Company) is pleased to announce results of drill hole LC21-18 at its Augustus Lithium Property in Quebec, Canada. *The drill hole intersected several spodumene bearing lithium pegmatite intercepts from 58.2 metres (m) to 160 m drilled depth; of which the most promising intercept grading 1.56 percent (%) lithium oxide (Li2O) over 6 m at 114 m drilled depth, and a second 19 m wide intercept grading 0.48% Li2O at 141 m drilled depth.* There are anomalous values of other rare metals such as beryllium (Be), cesium (Cs), niobium (Nb), rubidium (Rb) and tantalum (Ta).

Highlights (see Table 1 for details)

- ✓ 7.5 m wide spodumene pegmatite zone at 58.2 m with lithium grades in the range of 0.15% to 0.59% Li₂O.
- ✓ 1.9 m wide spotumene pegmatite zone at 104.4 m with average lithium grade of 0.55% Li₂O.
- ✓ 6 m wide spodumene pegmatite zone at 114 m with average grade of lithium 1.56% Li₂O, 218.83 parts per million (ppm) Be, 56.75 ppm Cs, 77.78 ppm Nb, 1,297.83 ppm Rb, and 88.98 ppm Ta.
- ✓ 19 m wide spodumene pegmatite zone at 141 m with average grade of lithium 0.48% Li₂O, 152.84 ppm Be, 53.42 ppm Cs, 93.57 ppm Nb, 1,854.16 ppm Rb, and 68.75 ppm Ta.

Drill hole LC-21-18was drilled during Phase 1 in 2021 at Augustus Prospect, UTM location: 287095.86E, 5367778.51N (NAD 1983 UTM Zone 18N), Azimuth 44.65 degrees (TN), Dip -64 degrees with a total drilled depth of 249 m. All intersections reported are based on drilled width and have not been converted to the true width. The drill core was logged and sampled at the core shack using a rock saw. For quality control and quality assurance (QA/QC), field duplicates, standards and blanks were inserted at industry standard intervals. The samples were bagged and tagged using best practices and were delivered to Activation Laboratories ("ACTLABS"), Ancaster, Ontario for sample preparation and analyses using laboratories code Ultratrace 7 and sodium peroxide fusion (Na2O2). ACTLABS is an independent commercial, accredited ISO Certified Laboratory.

Afzaal Pirzada, P.Geo., Geological Consultant of the Company, and a "Qualified Person" for the purposes of National Instrument 43-101 - *Standards of Disclosure for Mineral Projects*, has reviewed and approved the scientific and technical information contained in this news release.

ON BEHALF OF THE BOARD OF **FIRST ENERGY METALS LTD.**

"Gurminder Sangha" Gurminder Sangha CEO & Director

For further information, please contact the Company at: gsangha@firstenergymetals.com or (604) 375-6005

Neither the Canadian Securities Exchange (CSE) nor its Regulation Services Provider accepts responsibility for the adequacy or accuracy of this news release and has neither approved nor disapproved the contents of this news release. Forward-looking Information

Except for the statements of historical fact, this news release contains "forward-looking information" within the meaning of the applicable Canadian securities legislation that is based on expectations, estimates and projections as at the date of this news release. "Forward-looking information" in this news release includes information about the Company's information concerning the intentions, plans and future actions of the parties to the transactions described herein and the terms thereon.

The forward-looking information in this news release reflects the current expectations, assumptions and/or beliefs of the Company based on information currently available to the Company. In connection with the forward-looking information contained in this news release, the Company has made assumptions about the Company's ability to obtain required approvals. The Company has also assumed that no significant events occur outside of the Company's normal course of business. Although the Company believes that the assumptions inherent in the forward-looking information are reasonable, forward-looking information is not a guarantee of future performance and accordingly undue reliance should not be put on such information due to the inherent uncertainty therein.

	Depth	Depth	Total		1:00	-	_			Ŧ
Analyte Symbol	From	То	Thickness	Li	Li2O	Be	Cs	Nb	Rb	Та
Unit Symbol	m	m	m	ppm	%	ppm	ppm	ppm	ppm	ppm 0.2
Detection Limit Analysis Method				3 3 0.1 2.4 0.4 FUS-MS-Na2O2						
201896	58.2	60	1.8	1910	0.41	101	37.5	29.7	274	64.9
201890	60	60.5	0.5	1910 1640	0.41	48	274	67.3	2400	497
201898	64	65	0.5	2760	0.55	105	103	41.8	2400 520	497 113
	65	65.7	0.7							
201899	70.8	72	1.2	712 680	0.15	58	6.3	54.6 41	58.1	105 106
201901	76.7	72	1.2		0.15	31	133		950	
201902	88.4	89.2	0.8	1190	0.26	455	51.6	53.5	193	112
201903	104.4	105	0.6	317	0.07	229	139	81.1	373	120
201904	104.4	105.5	0.5	3770	0.81	194	40.5	78.8	338	150
201905	105.5	105.3	0.3	2660	0.57	192	28.7	82.8	247	180
201906	103.5	100.5	0.8	1270	0.27	176	35	87	312	180
201907	115.5	114	0.3	4850	1.04	157	202	72.9	1140	101
First Li Intercept	114	115	1	0040	0.04	005	44.0	04.0	007	00.0
201908	114	115	1	9340	2.01	305	41.3	84.6	207	60.9
201909	115	110	1	6380	1.37	238	53.1	76	1450	104
201911	110		1	7990	1.72	188	83.7	72.8	1950	141
201912		118		6320	1.36	212	50.3	84.5	1290	92.1
201913	118	119	1	6070	1.31	175	58.3	76.8	1460	69.3
201914	119	120	1	7340	1.58	195	53.8	72	1430	66.6
Total / Average	114	120	6	7240	1.56	218.83	56.75	77.78	1297.83	88.98
201915	120	120.6	0.6	2270	0.49	147	52.5	83.8	1450	70.1
201916 Second Li	140	141	1	217	0.05	248	38	27.8	433	24.2
Intercept										
201917	141	142	1	1330	0.29	266	36.3	102.2	469	102
201918	142	143	1	3410	0.73	191	42.3	82.6	1110	62.4
201919	143	144	1	2700	0.58	186	54.8	86.3	1870	65.7
201921	144	145	1	2330	0.50	98	71.3	116.1	2770	66.7
201922	145	146	1	2970	0.64	80	70.1	93.4	2630	54
201923	146	147	1	674	0.14	133	40.9	103	1300	57.3
201924	147	148	1	1760	0.38	223	46.3	109.5	1440	85.7
201926	148	149	1	2760	0.59	242	63.6	106.3	1940	73.5
201927	149	150	1	3960	0.85	181	64.3	128.9	1500	118
201928	150	151	1	2570	0.55	105	66.5	100.7	2450	60.1
201929	151	152	1	3060	0.66	97	72.5	74.8	2740	78.5
201931	152	153	1	2760	0.59	111	41.3	84.8	1280	48.1
201932	153	154	1	659	0.14	131	44.7	94	1600	59.2

Table 1: Drill Hole LC21-18 Assay Highlights

Analyte Symbol	Depth From	Depth To	Total Thickness	Li	Li2O	Ве	Cs	Nb	Rb	Та
Unit Symbol	m	m	m	ppm	%	ppm	ppm	ppm	ppm	ppm
Detection Limit				3		3	0.1	2.4	0.4	0.2
Analysis Method				FUS-MS-Na2O2						
201933	154	155	1	1480	0.32	145	51	78.6	2250	46.1
201934	155	156	1	455	0.10	128	36.4	110.5	1500	96.6
201935	156	157	1	411	0.09	106	35.2	67.9	1440	50.7
201936	157	158	1	1980	0.43	150	65.4	75.9	2940	47.8
201937	158	159	1	6350	1.37	205	61.1	80.9	1920	70.2
201938	159	160	1	594	0.13	126	50.9	81.5	2080	63.6
Total / Average	141.00	160.00	19.00	2,221.74	0.48	152.84	53.42	93.57	1,854.16	68.75
201939	160	161	1	140	0.03	115	54.5	76.9	2750	63.1
201941	161	161.5	0.5	183	0.04	220	48.8	66.6	1610	41.2

Note: A standard conversion factor of 2.15 was used to report Li to Li2O values All intersections reported are based on drilled width and have not been converted to the true width.