

FIRST ENERGY METALS HIRES MARKETING FIRM

Vancouver, B.C. (January 7th, 2022) – First Energy Metals Ltd. (CSE: FE) ("First Energy" or the "Company has engaged Wall Street Reporter, a multi-platform global marketing firm. Wall Street Reporter to help us share the First Energy Metals story with a wider audience.

The Company also announces has engaged Jack Marks and Octagon Media Corp., an affiliated company of Wall Street Reporter (together "Octagon"), for a six-month term to deliver a digital media advertising campaign coupled with an investor marketing program. As compensation, Octagon will receive a payment of US\$125,000 and has been granted incentive stock options exercisable to purchase up to 750,000 common shares in the capital of the Company at an exercise price of \$0.40 CAD per share. The options will be exercisable for a period of five (5) years.

The stock option grant will be subject to a four-month hold period and is subject to Canadian Securities Exchange approval.

About the Augustus Lithium Property

The Company owns 100% interest in Augustus Lithium Property in Landrienne & Lacorne-Townships, Quebec, Canada. The Property consists of 300 mining claims covering a total area of 15,000 hectares located approximately 40 kilometres northwest of the town of Val d'Or on map sheets 32C/05 and 32D08. The Property claims are spread in several claim blocks optioned in 2021 from different vendors. The Company has prepared a well thought out work plan on the property which includes diamond drilling, metallurgical testwork to produce battery grade lithium carbonate, and resource estimation. To date, the Company has completed 5,847 metres of diamond drilling in its Phase I drill program and has subsequently deployed its Phase II program.

About First Energy Metals Limited.

First Energy Metals is a Canadian mineral exploration company with a primary focus of acquiring a multicommodity mineral property portfolio. Its goal is to identify, acquire and explore North American mineral prospects in the technology metals, precious metal, and base metal sector.

The company's strategy is to:

- Acquire and advance projects through prospecting and early-stage exploration;
- Source joint venture partners to finance future exploration and project development;
- Create shareholder value through exploration success.

First Energy will continue to add to its multicommodity portfolio through organic acquisitions of new projects and opportunities with the intention of adding value and projects over time.

ON BEHALF OF THE BOARD OF FIRST ENERGY METALS LTD.

"Gurminder Sangha"
Gurminder Sangha
President & Chief Executive Officer

For further information, please contact the Company at: gsangha@firstenergymetals.com or (604) 375-6005

Neither the Canadian Securities Exchange (CSE) nor its Regulation Services Provider accepts responsibility for the adequacy or accuracy of this news release and has neither approved nor disapproved the contents of this news release.

Forward-looking Information

Except for the statements of historical fact, this news release contains "forward-looking information" within the meaning of the applicable Canadian securities legislation that is based on expectations, estimates and projections as at the date of this news release. "Forward-looking information" in this news release includes information about the Company's information concerning the intentions, plans and future actions of the parties to the transactions described herein and the terms thereon.

The forward-looking information in this news release reflects the current expectations, assumptions and/or beliefs of the Company based on information currently available to the Company. In connection with the forward-looking information contained in this news release, the Company has made assumptions about the Company's ability to obtain required approvals. The Company has also assumed that no significant events occur outside of the Company's normal course of business. Although the Company believes that the assumptions inherent in the forward-looking information are reasonable, forward-looking information is not a guarantee of future performance and accordingly undue reliance should not be put on such information due to the inherent uncertainty therein.

Table 1: Drill Hole LC21-14 Assay Highlights

Analyte Symbol				Li	Li2O	Be	Cs	Fe	Nb	Rb	Ta	
Unit Symbol				ppm	%	ppm	ppm	%	ppm	ppm	ppm	
Detection Limit	From	То	Total width	3		3	0.1	0.05	2.4	0.4	0.2	
Analysis Method	m	m	m	FUS-MS-Na2O2								
201719	106	107	1	969	0.21	151	1080	1.23	11	3300	17.5	
201721	107	108	1	2,810	0.60	413	1150	2.75	47.9	4360	58.6	
201722	113	113.5	0.5	1,680	0.36	29	157	3.03	27.1	409	53.7	
Start of Mineralized Intersection												
201723	115.5	116.5	1	10,000	2.15	227	49.6	0.58	96.4	446	115	
201724	116.5	117	0.5	1,220	0.26	67	12.8	0.41	5.7	46.8	12.6	
201726	117	118	1	8,620	1.85	181	53	0.49	66	820	54.1	
201727	118	119	1	6,530	1.40	216	44	0.48	49.1	363	59.9	
201728	119	120	1	4,150	0.89	246	24.8	0.41	128.9	163	261	
Total Width / Average assays	115.5	120.0	4.5	6,104	1.43	187.40	36.84	0.47	69.22	367.76	100.52	
201729	120	121	1	323	0.07	31	22.7	0.64	50.5	350	141	
201731	127.5	128.5	1	2,510	0.54	83	106	2.05	64.3	1110	55.5	
201732	128.5	129.5	1	96	0.02	12	11.6	0.33	162	270	119	
201733	129.5	130.5	1	111	0.02	13	13.9	0.43	148.3	274	73.8	
201734	130.5	131	0.5	276	0.06	22	43	1.13	59.5	271	40.1	
201735	143.5	144	0.5	1,220	0.26	93	198	3.78	37	958	43.1	
201736	144	145	1	115	0.02	279	29.8	0.46	102.3	328	97.6	
201737	145	146	1	172	0.04	443	38	0.59	134.3	633	88.7	
201738	146	147	1	1,080	0.23	236	37.9	0.57	88.2	1120	48.6	
201739	147	148	1	114	0.02	256	29.6	0.46	75.6	495	66.4	
201741	148	148.5	0.5	1,760	0.38	91	386	6.29	13.6	1300	10.5	
201742	160	161	1	399	0.09	244	97.8	1.69	92.1	702	69.4	
201743	165	166	1	40	0.01	157	15.5	0.47	152.3	544	91.1	
201744	166	167	1	58	0.01	201	37.4	0.43	92.2	1370	64.3	
201745	167	168	1	48	0.01	183	30	0.55	163.5	957	82.9	

201746	168	168.9	0.9	55	0.01	248	19.3	0.44	161.7	618	119
--------	-----	-------	-----	----	------	-----	------	------	-------	-----	-----

Note: A standard conversion factor of 2.15 was used to report Li to Li2O values All intersections reported are based on drilled width and have not been converted to the true width.